Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(1): 559-572, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38222549

RESUMEN

The photodegradation of organic pollutants using metal oxide-based catalysts has drawn great attention as an effective method for wastewater treatment. In this study, zinc oxide nanoparticles (ZnO NPs) and zinc oxide/copper oxide nanocomposites (ZnO/CuO NCs) were fabricated using the leaf extract of Croton macrostachyus as a nontoxic, natural reducing and stabilizing agent. The synthesized samples were characterized by employing X-ray diffraction, microscopic, spectroscopic, and electrochemical methods. The results confirmed the successful synthesis of ZnO NPs and ZnO/CuO NCs with well-defined crystalline structures and morphologies. The prepared samples were tested for the photodegradation of methylene blue (MB) dye under visible light irradiation. Compared to ZnO NPs, ZnO/CuO NCs showed greatly improved photocatalytic performances, particularly with the sample prepared with the 20 mol % Cu precursor (97.02%). The enhancement could be related to the formed p-n heterojunction, which can suppress the recombination of charge carriers and extend the photoresponsive range. A theoretical study of the photocatalytic activity of ZnO/CuO NCs against MB dye degradation was also conducted by using COMSOL Multiphysics software. The results of the simulation are in reasonable agreement with those of the experiment. This study contributes to the development of sustainable and effective photocatalytic materials that are suitable for application in environmental remediation, particularly in the treatment of wastewater.

2.
Int J Mol Sci ; 24(17)2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37685909

RESUMEN

Plasmonic molecules, which are geometrically well-defined plasmonic metal nanoparticle clusters, have attracted significant attention due to their enhancement of light-matter interactions owing to a stronger electric field enhancement than that by single particles. High-resolution lithography techniques provide precise positioning of plasmonic nanoparticles, but their fabrication costs are excessively high. In this study, we propose a lithography-free, self-assembly fabrication method, termed the dual-dewetting process, which allows the control of the size and density of gold nanoparticles. This process involves depositing a gold thin film on a substrate and inducing dewetting through thermal annealing, followed by a second deposition and annealing. The method achieves a uniform distribution of particle size and density, along with increased particle density, across a 6-inch wafer. The superiority of the method is confirmed by a 30-fold increase in the signal intensity of surface-enhanced Raman scattering following the additional dewetting with an 8 nm film, compared to single dewetting alone. Our findings indicate that the dual-dewetting method provides a simple and efficient approach to enable a variety of plasmonic applications through efficient plasmonic molecule large-area fabrication.


Asunto(s)
Nanopartículas del Metal , Oro , Electricidad , Películas Cinematográficas , Tamaño de la Partícula
3.
Opt Express ; 31(15): 24492-24504, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37475275

RESUMEN

Previous studies have shown that split-ring resonators (SRRs) can be utilized to achieve finely tuned nearest-neighbor coupling strengths in various one-dimensional hopping models. In our study, we present a systematic investigation of resonator coupling, providing a comprehensive quantitative description of the interaction between SRRs and complementary split-ring resonators (CSRRs) for any orientation combination. Our method includes an estimation of the coupling strength through a linear combination of periodic functions based on two orientation angles, with a sinusoidal expansion of up to the 3rd order, allowing for efficient and streamlined microwave structure design. Through our approach, we offer a satisfactory explanation of the band structure of SRR chains using a microwave-hopping model, which facilitates the exploration of exotic photonic band structures based on tight-binding theory.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA